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PREFACE

This report presents a new formulation in search theory inspired

by Pacific-Sierra Research Corporation's continuing analysis of ASW

problems. The formulation is distinguished by 1) a realistic character-

ization of the search envtroneent relative to prior analytical models,

and 2) low computational costs compared to simulation techniques. The

report should be of interest to operations researchers responsiblt for

for optimizing search tactics and assessing search technology.
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1.0 INTRO;iUCTJON AND SLJK•\RY

A fundamental problem in search theory is to calculate the proba-

bility of detction for searchers attempting to find a target whose

initial iocation and subsequent motion are characterized statistically.

The searchers' paths and laws of detectiu,i are assumed known. The

solution of this problem has important applicazions in the optimization

of search tact ics and the assessment of search technology. Because of

a lack of relevant and accemribl_ research on the moving target problem,

operations analysts have oftert resorted to overly simple ar.alytical

procedures or expensive computer simulations to obtain numerical results.

This report presents di new formulation that provides an exact soltt-

tiVU [UL the search problem, assuming a Markovian search and a target

whose motion is a diffusior process. These assumptions are then relaxed

to at ,ly the search formulation to seveial important non-Harkovian tar-

gets and searchers. In general our purpose is to 1) render the search

formulation accessible to operations analysts without sacrificing mathe-

matical rigor; 2) narrow the" gap between certain analytical assumptions

and the behavior of actual targets and existing search technology; and

3) illust-rate the utility of the formulation with simple numerical

examples. After a brief review of previous related research, the pre-

sent section summarizes the developments in this report.

1.1 PRIOR RESEARCH

in his pioneering work i1l], Bernard Koopman solves problems in-

volvirig -he search for moving targets with his classical "random s.'arch"



detection model. Although It remains a viable analytical tool thirty

years after Its introduction. the random search model Is limited by

omisnion -if certain operational considerations such as a realistic r2pr.v-

aentation of either target or searche;_ motion, or an accommodation of

gentral detection laws.

Later results in search theory have generally emphasized the optimal

allocatinn of search effort for detecting targets that are either sta-

tionary or have simple ,inds of motion. The r,-vernt b)cpk by Stone 121

presents a unified treatment for much of this wotk.

Hellman [3] provides a general formulation ol the Harkovian search

problem that is similar in many respects to developments given here.

However. the level of presentation and the use of a Fokker-Planck equa-

tion to describe target motion may have limited the application of

Hellman's work by those seeking computational results for actual search

problems. For comparison, we describe the work of Koopman and Hellman

in somewhat more detail alter developing our formulation of the starch

problm.

1.2 SULJMAP!

Section 2.0 considers the search for a Markovian target that moves

discretely in both time and space. That is, the targtt may be situated

in any one of a countably infinite number of l-cations, and is capable

of jumping to another location at each time step. The initial distri-

bution and the location-to-location transition probabilities for the

target are known, as well as the probability that the searchers will

find the target, given its locaticn. The latter i, determined by the,



searchers, paL'.1 and laws of letection. We aerive a rec-u.s,ve difference

cquat in [or the dLstribution of the target at any time conditioned on

an unsuccessful search until that time. This . xpression is then used

to obtain the probability ot detection. Although it only -rudely repre-

sents the movement of real targets, the discrete formulation i.* .. good

model for certain genecalized search problems, as we show in an example

involving the interception and decodir, of clandestine messages.

The discrete search problem of Sec. 2.0 also introduces the con-

tinuous case treated in Sec 3.0. Working similarly but at a somrwhat

higher rathematical level, thaE section derives a nonlinear Integrodif-

ferential equation for the target location density conditioned on an

unsuccessful search. Tiie target im assumed to move at a diffusion pro-

cess with known initial density and transition probabilities. The

searchers' ability to find the! target is represented by the Markovian

search densirv introduced by Koopman and used throughout the literature.

By working with the joint events--target location and unsuccessful

search--we linearize the Integrodifferential equation and use its solu-

tion to establith a simple expression for the probability cf letection.

Section 3.0 concludes with a physical interpretation of the continuous

search formulntion, comparing It with the tre.atment bY Hellman.

Section 4.0 applies the continuous search formulation to certain

operatinal aspects of actual searches. The search density of Sec. 3.0

Is expressed as an explicit function of the individual laws of detection

and paths of an arbitrary number of moving or stationary searchers.

Using K-",.man's lateral range curve, we find an approximation that
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extends the icople m thei saPrch formnul tit ton to mantlv impomt lnI, It(,

Markovtan search devr'ics. The approximatiom involVt he t lt.' IIv',r iiion

o' an Abel Integral equiel on tr( obtain thie "eqowvale'nt" HMarkov i;a liiw

of det'ct Ion from any w• I I -hb'haved lt era I range' ut-v e.

That section .1.so ext mnd; tihe search tormulation to include :a 4imnlitc

but iniportant c•Iass of non-Markovlan targer!' of which the c'l assi cal Itle'-

1ng datum i. a special cast'. The fleeing datum Is a target that initially

select's a head int at random In the Interval 0' to 360%, and then move

on a straight-linte c'ourse at a known const ant speed. 12losed-form .qolu-

tions of the differential equations derived in Sec. 3.0 arc' obtained for

such .t target. These solut ions art' used it it anumerltal example to

l1 lust-at(e the dependence of the seart h path on detec tion probab i lit ty;

S ... ..ttl it, ttclllam ted to onet that ned w tti the pats -ITvn artIntc random

sea;rc tnmdvI tf Koopman.

"Thie last section ct'ncen't'rates on the numericalI opt imizzat ion of

search effort In a prothle'm dva l.1mg with stationary sensors tised to

detect a fleeing datum with an tinitial circutar normal distributitn.

The sensors are assumed to have - delinitt'-range law o1 detection. We

use a simple and inexpensivt' computa t•tonal procedure to i ind the optimal

circular sensor pattern that maximizes the probability of detection for

a searcl. of fixed duration. The optimizat ion i.; performed over a range

of input parame -.s relevant to a suhmarine .t, arch. For a specific set

of inputs, the best circular pattern with e ght sensors is shomni to hto

superior to ,an opt ltliI squtare pattern us tog mint' sensor.-;.



Finally, we consider the i'ifect u• tLaiget course changes subsequent

to the initial heading selection of the fleeing dal.cm. The bearch is

undertaken by sensors in a circular pattern p,:vic.asly optimired fcr a

specific fleeing datur. ptobhiie. All inputs re~main as iP, that problem,

excent that the target chooses a new cour3e every fixed time iticrement.

The surprising result is that additional course seltections hardly In-

crease the target's chance of escape; in f-ict, they decrea.-e its chance

of escape if not sufficiently frequent. Section 5.0 cotiwlades with

suggestions for broadening our computational experience and extending

the analytical development of the search formulatf'.i

I]
, i
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2.0 SEARCH IN DISCRETE SPACE AND TIME

This section considers the search for a Markovian target that moves

in discrete time in a space consisting of a denumerable set of states or

locations. The discrete search problem provides a structure in which

we can consider the more complex situation where the search process and

target movement occur in continuous time and space (i.e., where the tar-

get moves as a diffusion process). The continuous case, treated in Sec.

3.0, is the most relevant to real-world search problems, and, happily,

will lead to closed-form solutions for the cumulative probability of

detect on in many problems of interest.

The discrete search problem, however, has intrinsic importance be-

yond merely introducing the continuous case as demonstrated by the example

at the end of this section. In addition, search problems are often part

of a larger model that has a previously defined discrete space for target

motion. The discrete formulation is therefore especially useful in a

large-scale simulation of a military operation where search is one of

many functions that contribute to its overall success. Such simulaticns

are handled almost exclusively by digital computers where friendly and

enemy forces are constrained to move on a finite grid in discrete time

steps.

Ignoring for the moment the distinctions between the discrete and

_Z continuous cases, we can make the following informal descri)tion of the
[I

general cla-,s of search problems addressed: Find an expression for the

cumulative probabi~lty of detection for a given number of moving ot

stationary searchers attempting to detect a target whose location At
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t- 0 and motion for t > 0 are governed by a specified initial distribu-

tion and transition probability function, respectively. Each searcher'.

path (fixed point for a stationary aearcher) and law of detection are

also given. Our approach is tc first derive an expression for the location

density of the target for any time t > 0, conditioned ou an unsuccessful

search in the interval [O,tQ. The solution of this expression is then

used to esteblish P(t), the probability of detection in the interval [O,t).

For the discrete case, this procedure entails finding an expression for

P(n), the probability of detection by time n, after establishing a re-

cursion for the distribution of the carget at n given that rhe target hMs

not been detected.

2.1 UIGET MTION

Let the '.ocation of the target at time n be represented by

{ln- 0,,2,...), an irreducible Harkov process defined on the state

space X taken to be the set of positive integers x - ,...... Hence,

target motion is conside-ed to be a discrete Markov process with respect

to both the state variable x and the time variable n.

At n - 0. target location is characterized by the knowm initial

target Zoation deneiry .,(x), defined by

such that

t(x) -P O
x-l
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TUrget movewmet is represented by the known stationary one-step tran-

nition p~cAbablitilee

ill = n+1" ixn'i

such that, for i,jGX, and n - 0,1,2,..., we have as usual

(i) *,j > 0

and

J1-i

n ordaring target transition and search events, a prerequieite for
L L=

the analysis to follow, we assume that the n" target transition occurs

instantaneously at time n - c, n - 1,2,..., where E << I is arbitrerily

small.

2.2 SEARCH PROCESS

Consider the detection event defined by

B {target detection at time n + 0}
n

where it is assumed that all xEG are searched instantaneously at each

time n + , n - 0,1,L2,..., and (as iii the case of target transitions)

S<< I is arbitrarily msall. The ability of Lhe searcher to detect the

target is characterized through the known search density V(x,n) defined

by
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Y(X,n) "R(B{n jx"

for all xEX and n - 0,1,2, ....

We remark that the search density y(x,n) results 'rom the combined

effect of a finite number ot stationary or moving searchers, each with

its own (possibly unique) detection rule and zearch path (a fixed point

in ] for a stationary searcher). Furthermore, the search--more generally,

each searcher--my coimence at some time n' aftor the initial target

"fix" with anqsociated density 0 Wx); in this case, y(x,n) - 0 for all

xEX, and n - 0,l,2,...,n'-1. Both of these points are elaborated

in Sec. 4.0, whieth considers the applications for the continuous search

formulation.

We limit the present analysis to a M,.akovian search in the sense

that the result of a search at time n + E depen(a only on the location

of the target at that time, and not the results of prior searches. More

precisely,

{B IXno ij, B -'_, B--_2".., o 0

•,.e' I X -i)
nn

"y (i,n)

The Harkovian property has two interpretations. If we define the

search as f Lnished at the time of the first detection, then a search at

time n + c implies the realization of the events Bn_1, B--2,.. B01

and the property has a trivial meaning. Ch the other hand, if we choore
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to continue the search indefinitely, then the Markovian property allowni

us to count detections without altering our search strategy (remember-

ing that y(x,n) is fixed a priori). In the development below, we solve

for the probability of the firret detection by time n. Thus, both inter-

pretations are viable.

2.3 INDEPENDENCE OF TARGET MOTION AND SEARCH

On intuitive grounds, the target is unaware of the search, and the

searcher's strategy is fixed a priori; target motion and search should

thus be indepen, ent in some sense. To embody this intuitive notion

concretely, we introduce the independence property:

. it X - i. ...... Bti+1 " n n" n- L' .e

-{x n+1 j ix - J)

"-*ij

th

This property simply states that the (n+l) transition iz independent

of the previous n searches. Rewriting it in a slightly different

form,

(x n+z - J, Bn xn -i, --.- l' B n-29 . q B 0
n • n+ n' n-i n n

*i- y(in) P

where we have employed the Markovian search property as well.

14!



2.4 SEARCH THEOREMS

In order to establish P(n), the probability of detection by time n,

we introduce p(x,n), the target location density at time n, given an

unsuccessful search until that time--or, more simply, the conditional

density. Thus,

p(x,n) -"P{X n=xB --n-l''. 1 (2.1)

for xGE. The following theorem obtains a recursion for p(x,n) from the

givens po(x), and y(x,n).

THEOREM 2.1:

4",t dvMfl rL. t4L*.d4 pk'.I.I) ,ILthe recusiv equaF14~ Jiti

E [1-y(in)I 'Li p(i,r,)

o•jn+) , n - 0, 1, 2,,... "(2.2)

i=1

with initial c.'ndition p(i,o) =p 0(i), iEX.

PROOF:

From Eq. (2.1) we have

p(j,n+l) -(X+ -n+ j i•-j, I io,

Yi{x J, B ...n . B}

nt{e,... }

\l
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,xrl .M.E , i nI B n-l'" B- 0

where

i,,1

n-_ 0 n-i" n n -

- i Ixn, Bn 0)"" X nI-i 1 0"'.,

41

i-1

From the Markovian scarcb property,

'ýPci Ix n-f if s-9-it....'W 0o ..Y(in IX n, - i

- 1 -o(i.n)

80 nu t

i-i
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Slad.larly,

n~l n n-li'" 0

*iA x j
J' n1 Xn ni n

i-1

- ,ij X -yi, B , i )]in

n n n n-l 0

- , IP, [--i,ni -~~nn+1j

which ~ ~ ~ -:u e thel proof
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Now we let Q(n) be the probability of an unsuccessful search until

tim n. Thus.

Q(n) -ABi , ( .. o (2.3)

and the probability of detection by n is

P(n) - I - Q(n) (2.4)

The following theorem eptablishes P(n) from knowledge of p(I,n).

THEOREM 2.2:

T77 probability of detection by tire n is given by

n-I

n'-O i-ln

where y(i,o) - 0 and p(i,o) - 0o(1) for all i1•.

PROOF:

From Eq. (2.3) we have

o.Xn + l _ A W n"'( , . . 0 1

Q(n) - -

B O
n n' -l-•" -- 0o
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i-i
- P •n-i B in-l,-..... B

- . x i}.I{(x I n-,"' B"
i-1

= 1-y-O.,n)] p(l.n)
i-i

Thus,

n-i
I -

I IL 'I-:
n'=0 i-l

which together with Eq. (2.4) completes the proof.

2.5 DISCRETE SEARCH PROBL'EM

As an application of the discrete search formilation. consider the

following generalized search problem. Each day Red selects a broadcast

channel to send an encoded message to remote operatives. In an attempt

to intercept and decode Red's message, Blue also selects a channel each

day. Both Red and Blue are limited to one selection daily, and we essume

the comensurate sets of channels are available to each. We also

assume that Blue has some knowledge of the process by which Red uakes

daily channel selections. The problem is to assess Blue's strategy for

intercepting and decoding Red's message.



The "target*' in this cane Is Rcd's broadcast channel. Let the

Karkov process (X nn- 1,2,...! with state apdce )( represer.t Red's daily

channel selection. Thus, If 3 is taken to be the finite set of integers

x-,2,...,l, then X - x Las the interpretation that Red chooses to
n

broadcast on channel xEG for day n. We assume that, on day zero, all

channels are equally likely, so p (x) - C-I for all xOE. Blue's knowl-

edge of Red's broadcast sequence is embodied by the one-step transit!on

probabilities *tj for all i,.eX.

Bluu's strategy, fixed a priori, consists of the monitored sequence

of channels denoted by <z n, such that z nC( for n,0,1,2..... If Bluen n

has correctly selected Red's broadcast channel on any day, then he has

prcbability y of decoding Red's message. Blue's "search density" is

thus given by

y(x,n)

0 otherwise

for all xGX and n-0,,2 The probability that by day n Blue will

have successfully dtcoded a message sent by Red is, from Eq. (2.5),

n-I I

P(n) - I - I E It -y(in')lp(i,n1)

n'-0 i-I

where p(i,n) Is found from tht" recursive equation (2.2).
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iiy(i,n) jp(I~n)

with inlti-il condition p(1,0) -I for all iCjEX.
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3.0 SEARCH FOR A TARGET WHOSE NOTION IS A DIFPOSION PROCESS

Th i a sect ion derivirs tlit' key result of our alini I--a inear dif-

ferent.iatl equat ion from which a simple expression for the prohab I lity

of detect Ion is obtained when the st.-arch is undertakn in cont iiuous

space and time. The target is assumed to mo\vt, as it diffusion prtoces'ts

with a ki'own transition probability function and initial distribution.

Thu search process is tit' cilttinuous space and tinm analogue of tilth

discrete Markovian search discussed In Sec. 2.0.

The importance of the tontinuous search problem Is twofold. First,

physical considerart ions suggest a continuous space and time representa-

tion of target and seaA-her behavior. Real targets generally cannot

move ovFer finite distances in zero time. and existing searc'h dev xic'es

generally operate .ýontinuously in tioae. Happily, tht,-ze ob-4t rrattolls

suggest that the processes used to define the search problem have little

difficulty meeting the regularity and continuity conditions required for

the derivations below.

Second, the continuous search formulation involve.-. c:,prt.ssions that

are easier to manipulate than the recursion of Theorem 2.1 for the dis-

crete case. Indeed, Sec. 4.0 presents a clo,;ed-form solutt, q for a

classical real-world problem, the search for a fleeing datum. Only I

simple numer lca I integra t ions are requi red 1to compute - lit robab I It y o f

detection for this problem.

The analysis of this section is. necessarily carried out at ai sigui-

ficantly higher mathemat :c'al level than that of Setc. 2.0 for the diiscrt'te

.t4a rt',h problem. Howt'vcr, tilt. structure of the derivations rena ins tilt'I

JII
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sawe: establish -a rel.alion tor the :ondlttonal torget location density,

and 4erive an exore:tsof.n for the probability of detection as a function of

the cgaditdonal denbity. TheV Ivcegro.: fferentlal equation for the con-

ditional density is linearized by considering the join. density (i e.,

th.. densit:y assortatetd wit0 the jo.int event, target location, and un--

successful search). SecLior. 4.0 solves the ilnear integrodifferential

equation for the joint den.3.tv tinder the assumption of the clas:dicai

fleetlng-datum ta-get mA~ton and an arbitrary Markovian search.

3.. TARGET 1MtOT ION

Consider the Markov process {X(t), r>01 with continuous time T ra-

meter tG [0,') and state space 3 taken to be E , the two-.dimensiona_

Euclidean space. The location of the target at tinae t -> 0 is represented

by the random variable X(t)=X With coordinates (X Wt), X- 2 <

R(t) < ,•.

At 0., the target is located according to the known initial.

density p(x). Thus,

%o(X)dx - .{X(O)E dx}

and

fP (x)dx ,,1i (3.1)

where dx is an infinitesimal element of area containing the point xC,

2
and the integral is over F (as will be the c--z2 for aLl integrals oelow,

unless otherwise noted).

The known transition probabilities of {X(t), t>}O are given by the

,unction q,(x,t;y,T), I > t, x,yrt, such that

!1I
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*(xt;y,T)dy - x(T) Edy X x(t) x) (3.2)

and

fV(Xt;y,T)dy - 1 (3.3)

Since (X(t), t>01 Is a Markov process, it satisfies the Chapman-Kolmogorov

equation; namely, for sE(t,T),

*(x.t;yT) - f *(x,t;z,s) O(z.s;y,•)dz(34

We assume that ji(x,t;y.r) has a derivative with respect to T at T t,

so that we may write for small At

-(x,t;y,t+At) - S(y-x) + ALt [ Tx + o(t) (3.5)
r-t

where 6(-) denotes the two--d.menslonal Dirac delta function.

We will also need a set of regularity conditions that limit the be-

havior of tie target over small intervals of time. These conditions will

be recognized as those used in the d privation of the Kolmogorov diffusion

equations. WLth SA taken to be a circle of radiua 6 > 0 and center x,

the regulartty conditions for x - (x ,x2), x.yGX, tr[0,-), and small At

are given by

J w(x,t;yt+at)dy - o(Gt) , (3.6)
E2-

f (y-xt ) *(x,t;y,t+lAt)dy - a i(x,t)-t + o(flt) 1-1,2 , (3.7)

SI
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6

.b 1j(X't)At + 0 ('It) ,i,j 1.2 , (3.8)

and

f(y -xi) v (yx,t;y,t+At)dy - o(At) ij 1,2 (3.9)

6s

where, for Eq. (3.9), u,v > 0 and u + v > 2.

3.2 SEARCH PROCESS

The search is undertaken continuously ir time and is Mat'rovian in

uMi.uLe. if we denote the decection event for T > t ty I

B(t,r): (target detection within [t,T))

then the known search density Y(x,t) is defined by

y(x,t)At + o(At) - 40{B(t,t+At) I X-x) (3.10)

for x)E, t {O,c.), and small At. Note that the probability in Eq.

(3.10) is conditioned on a Stativnarf target at x. We will expend con-

siderable effort to suit oui definition of y(xt) to the case of a

target that, whýle moving, satisfies ,he regularity conditions (3.6) to

(3.9). To this end, we require that, for all xG1, tej[O,-), a constant

M exist such that

Y(xt) < M < (3.11)

and, for all x,ye, tE [0,-), and small At,

, f " • " O ',' - ,- ,•,, • .. ., •, ,, , • , ,, ...... 4
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Sf(B(t, t+At) I X(t+At) = y, X(O) x)

-Iy(x,t) + E 1/n! [d~af 3x, + d a/ 2  Ty(z,t)n-m1,2 2/2 xMy

+ o(ly-x-2At + o(At) , (3.12)

where we have made use of the notation

() di M (yi-x) ,

(ii) [d /I + d 2 a/ax 2 ]

2 22 2 2 2 2
S[d1a laxI + 2d td? a /ax 1 ax 2 + d2 a /ax2]

(iii) okly-xl) o(d1) + o(dld2 ) + o(d2)

Furthermore, we assume that the first- and second-order spatial partials

of y(x,t) exist and are bounded for all xGE and t [O,,).

Equation (3.12) bears further explanation. It embodies the notion

th t, if we know that the target remains in the immediate neighborhood

of x over a small interval of time At, then we can express the proba-

bility of detection in [t,t+At) by an expansion of y(",t)At + o(At)

about the point x. Indeed, Lena 3.1 below proves that, since the target

cannot leave th.: neighborhood of x in a small Interval of time, it is un-

necessary to condition on the nearby endpoint X(t+At) - y.

As in the discrete case, we must formalize the Markovian nature of

the search. We thus require that the sea:ch process satisfy
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R{B(t,T) IX(t) -x, "B(O,t) - .ýP{f(t,T I X(t) -xI (3.13)

and

9(B(tt+At) I X(t+6t) -y, B(O,t)} - 0P(B(t,t+,At)I X(tAt) my) + ,(&t)

(3.14)

for all x,yeX, te[O,-), and small At. Finally, the independence of

search and target motion is embodied by the obvious requirement that

,.{X(r)edy I X(t) -rx, B(O,t)) - Y(X(T)Edy I X(t) -x) (3.15)

for all XyGX, T > t, and T,t•j[O,-).

3.3 CONDITIONAL DENSITY

The conditional deneity p(xt) is defined for dx, an infinitesimal

element of area containing x, by

p(x,t)dx - jP(X(t)rdx 0B(O,t)} , (3.16)

where xrX and tr [O,-). This subsection derives a nonlinear integro-

differential equation for p(x,t) in terms of the givens p (X), W (x,t;yr),

and y(x,t).

The following lemma extends the definition of y(x,t) to a moving

target that satinfies the regularity conditions given by Eqs. (3.6) to

(3.9).

LEIIMA 3.1:

Given the pI'ocese iX(t), t>O} representing tacget Location,

the searh density y(x,C satiafies the foltlowing conditions for araZl At-
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A. {B(t, t+( t) t)X -m - 1y-(x,t)At + o(At) (3.17)

B. O{B(t,t+ft) I X(t+ft) ,yl - l-y(y~t)At + o(At) (3.18)

PROOF:

For par'- A, we write

AiB(t, t+At) I X(t) = X)

= f.?I(t,t+At) I X(t+At) -y, X(t) x} -P(X(t+At)Edy I X(t) - x)

which by Eqs. (3.2), (3.3), and (3.12) becomes

J "tU%''L. •L$L- I LtQ. -- • -

- 1-YN(x.t)t + At 1/nf [d 1 a/ )x1 + d 2a/ax 2  Y(x,t) + o(ly-xl)
n -1,2 x My

*(x,t;y,t+At)dy + o(At)

The integral In this last expression need be performed only over S$, since

the tirst- and second-order partials of y(x,t) are bounded and Eq. (3.6)

applies. Furthermore, Eqs. (3.7) to (3.9) imply that performing the inte-

gral over S6 will result only in At and o(4t) terms proving part A of the

lemma. The proof of part 8 is similar, if we cornaider Lhe process

.X(L", t>O} reversed in time and impose similar regularity conditions.

We will need the following lemmas tc obtain our main result in

Theorem 3.1.
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LEMM~A 3.2:

yf{i(t, t+&t) WB(O.t)} I -lAt fy(x.t) P(x,t)dx + o(ftt) (3.19)

PROOF:

Using Ec3. (3.13), (3.16), and (3.17), we quickly obtain

ý?{B(t,t+at) 1i (O,t)}

-fYihi(t~t+4t) I X(t) -X) i9(X(t)rdx I(~)

-][I- y(x,t)At + o(At)) o(x~t)dx

which prove3 the lenma.

LEMMA 3.3:

For dy, ar: infinitesimal eletent of area containiiV yQ:3 and

{x (t:+At) edy I bi(Ot)1

dy I CYt) + at f 2 px,t)dx + ot) (.0

PROOF-

With help from Eqs. (3.2), (3.5), (3.15). and (3.16), we obtain

Y(X (t+ftt) i-zdy I Bi(O.t) )

- fiP{X(t+At) dy I X(t) -u x} {X(t) Gdx 7i(O,L)}

= dy]*'u,t;y~t+ar) p(x,t)dxr
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3#(3[,t; Y,T) ()
m dyj[5(YYx) + At + o(At) p(xt)dx

w dylp(y,t) + AtfI( •.•..It) t P(xt)dx + o(At)I
S-T-t

*,.,in3 the ieina.

For notational convenience, let

r(t) - fy(x,,t) p(x~t)dx (3.21)

for all ts [0,-). The function r(t) will be recognized as the search

int., ýty in the sense that the probability of detection in the interval

[t~t ), conditioned on an unsuccessful search in [O,t), is r(t)At + o(At).

Indeea, Lcm 3.2 tells us that

41{B(t,t+At) ]i(0t) - r(t)At + c(At) (3.22)

The following theorem presents an integrodifferential equation for

the conditional density p(x,t),

THEOREM 3.1:

Given the inputs p(x), *(x,t;y,T), and Y(xt) for the continfuous

eearch problem, the conditional target location density p(y,t), y-es,

tc [0,-) a the solution of the nonlinear integrodifferential equation

-L'-P'-('I 4f•X•yt;'I1 P(x,t)dx + o(yt) [r(t)- y(y,t)] (3.23)
a, t i i o Ti

wi•th initial condition o(y,O) - 0 (y) for all yc),
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PROOF:

From Eq. (3.16), wp have

p(yt+St)dy - ,jP{X(t+At)Edy IB(t,t+6t), Bi(O0,t)}

- {X (t+At) r:dy, B(t, t±-AQii(0, t)}
{B -(t, t+At) I -B-(0, z)}

S{X(t+At)dy I B(,)1 {Bi(t,t+&t) I t

c IB(t,t+At) I B(0,t)}

Noting that, for snall c,

(U-t) -1 + C + 0(0)

with the help of Eq. (3.92) we can write

[ff{i(t t+At) I B(Ot)

- I + r(t)Ar + o(6t)

Together with Eq. (3.14) and Lemmas 3.1 and 3.3, this expression results in

p(y,t+At) - {(y~t) + ..t •')](p~t'y ~dx=(~ r A p(x,t)dx ' -

+ ,(At). [I- y(y,t)At + o(At)] 11 + 1(t) + o(At)]

P - 0~~yt + At ~f~.22~.Lj o(x.L0dx( t d, J-t

+ p (y,t) !r(t) -- y(y,t)j + o(At)

Transposing, dividing by At. and letting AL -• 0 completes the proof.
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Corollary 3.1 shows that the solution of Eq. (3.23) is indeed a

proper density for sli t4 [0,-).

COROLLARY 3.1:

The solution of the equation for the conditional density pre-

sented in Theorem 3.1 satisfiesop(y,t)dy - I for all te[O,-).

PROOF:

Let (t) --fp(y.t)dy for all te[O,.). Then Eq. (3.23)

becomes

i 3/at w(t) -u(t) + v(t) ,

" _,.•bwher e

SU(t)- ff kxI;.O~,.t)dxdy
yx

-fox.t) 3[a• (X.fot;Y.T)dyY] dx

x y

and

VMt P f(y~t) [r(t) - y(y~t) lay

r(t) [w(t)- ]

By Eq. (3.3), however, u(t) - 0 for te[O,-), so that

a/at W(t) -r(t) [W1,11) -I I

The solution of this equation is

i'
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t

w(t) - 1 + K e

But w(o) - I by Eq. (3.1), completing the proof.

We are now prepaied to consider the probability of detection P(t).

Specifically,

Q(t) - JO(B(O,t)} (3.24)

and

P(t) - I - Q(t) (3.25)

for all t The following theorem obtains P(t) from the search in-

tensity r(t).

ruwnnR14 3.)

The probability of finding a target by time t when the target

moves as a diffusion proceezs is given: by

t

P(t) - 1 - exp[-f r(ý)d•j (3.26)

0

where the search intensity, r(t) -fy(xt) p(x,t)dx, is expre'ssed in terno

of p(x,t), the solution to the equation of Theorem 3.1.

PROOF:

From E.1 s. (3.22) and (3.24),

Q(t+&t) - ,-tB(0,t-t+At))

- ,ý?B(0,t)} ,9B(tt+At) B(0,)

- Q(t) [I - r(t)At + o(At) ]
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Thui.

•+•t)A -q~ - r(t) + o(At)
O(t)At "At

and, after letting At - 0, and noting that Q(O) - 0, we obtain

t

log Q(t) - - f r(r)dý
0

proving the theorem.

3.4 LINEAR SEARCH EQUATION

The nonlinearity of Eq. (3.23) makes closed-form solutions for the

conditional density p(x,t) and probability of detection P(t) difficult

to come bvy By c iderig the jo1_lt t-arge lacation densry for,

simply, the joint density) p(xt), we can obtain a linear search equa-

tion and a simpler expression for P(t). Thus, we define for all xiEX

and tE[O,)

p(x,t)dx - j{X(t)e dx, B(0,t)1 , (3.27)

and quickly note that

p(x,t) - p(xt) (I - P(t)] (3.28)

and

P(t)- 1 -Jp(x,t)dx (3.29)



fIIEORFM 3.3:
The joint tarjat location denaity p(y,t), y-X, te[O,.o) aatffi

the linear intagrodifferentia7 equation

p(y~2 "f- =XttY P(xjt)dx - y(yt) p(y.t) , (3.30)

at f I pDy t)

wth initial eonditio. p(y,O) - po(y) for all ye3.

PROOF:

The proof is to simply transform Eq. (3.23) by Eq. (3.28).

Although the joint density has less intuitive appeal than the con-

diLlonal density, it clearly represents the supevior analytical tool for

q a .. ..... p on ,J's aund (3.30U) will thus be the

operative equations as we apply the results of this section to the

numerical problems of Secs. 4.0 and 5.0.

3.5 PHYSICAL INTERPRETATION OF THE SEARCH FOt,-1ULATIrN

The nonlinear equation for the conditional density. Eq. (3.23), and

the linear equation for the joint density, Eq. (3.30), have simple but

important physical interpretatiotns. both equations consist of two terms--

the diffusion term resulting in density changes due only to target move-

ment, and the search term causing density changes due only to the effect

of search. For example, consider the search for a stationary target,

i.e., a target with the trivial transition probability function ý(x,t;yi) =

8(y-x). In this case, Eq. (3.23) becomes

at - p(x,) [r(t) - y(x,t"] (3.31)
3t "



and p(x,t) is affected only by the search deniity y(x,t). Altern t:I-.,eIy,

with no search--i.e., if y(x,t) - 0 for all xt-. and tt IO,")--we obtain

the search-free equation

- f o(x~t)dx (3.32)
t L 31 j-

T-t

where p(x,t) is affected only by the motion of the target. Similar observa-

tions can be made for the Joint density, p(x,t)-

The situation is illustrated in Fig. 3.1, where It is assumed that

the initial density p (x) was circular normal, and that at t = 0 the

target chose a heading from a uniform distribution on [0,21T) a d fled at

a known speed (the classical fleeing datum). The (xl,x 2) plane is tLhe

search region and the x 3 axis plots p(x,t) for t - 7 > T > 0, where the

search by a single naoving searcher commenced at Ti. Thus, p(x,t) is tile

solution to Zq. (3.32) for t [0,T 1), and Eq. (3.23) for te-[T1 ,T). The

details oi the solution are taken up in Sec. 4.0; but for now we note that

the wide depression in the center of the p(x,T) ,urface is causcd by the

Bessel function spreading of a fleeing datum density, as first described

by Koopman [11, and the narrow depressien along the ridge is due to an

ur.successful search following this path.

Intuitively, we expect that if we search an area unsuccessfully,

then the object of our search is less likely to be located in that area.

This phenomenon caused the depression along the ridge of e,(x,T) in Fig. 3.1.

Analytically, Eq. (3.23) tells us that, for points under thi influen-ce

of the searcher (i.e., those for which ylx,t) dominates its ave-rage

' • I: " '| •.. ... . " " I ' iA
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r(t) -fy(x~t) p(x,t)dx), the change of p(x,t) with time due to the search

is negative. The effect of r(t) in Eq. (3.23) is te elevate o(x,t) for

points relatively free of the Influence of the searcher, resulting in

fp(x,t)dx -I for all te[O,w) as shown in Corollary 3.1. (In the linear

Eq. (3.30), the search term [ -y(x,t) p(x.t)] is always nonpositive so

that fp(x,t)dx -IP(t) < I for all t CEI[,-)

The search-free equation, Eq. (3.32), is a direct result of the

Utapman-Kolmogorov equation, Eq. 3.4). Indeed, we can write Eq. (3.4)

for tFE[O,i) as

•(6.,O9y'l) = f*(z,t;v.,;) i'(x.0;7't)dz

Integrating over the Initial density p (pt) results In

j4.(x,L);y,i) P 0(:)dx - f>( t;rzY9T) 1fp~xO,z~it) p Cx)dx dz

or, in the absenz.c of search,

so th• t

a Tta T-t

whiich Is the searcii-free eqv':tion (3.32).

I Finally, we remark that the only difference between Eq. (3.23) and

the equatic(r presented by Hellman 13] is in the liffusita term, because

Hellman starts with a Fokker-Planck equatior. for ,(x t;y '), rather than
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*(x,t;y,r) itself. (Thus, by a manipulation similar to the one above

for the Chapman-Kolmogorov equation, one could obtain a Hellman search-

free cilustion from the Fokker-Planck equation.) The specification of the

motion of an actual target by those responsible for the search would,

needlesB to say, lead directly to a representative transition probability

function, rather than a Fokker-Planck equation.
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4.0 APPLICATIONS OF THE SEARCH FORMULATION

This section applies the results of Sec. 3.0 to certain operational

aspects of actual searches. The emphasis is on target motions and search

procefses that ostensibly violate the Markovian assumptions needed to

derive Eqs. (3.23) and (3.30), on which th continuous search formulat ton

is based. This section should be regarded as an introduction to the work

necessary to bridge the gap between the analytical assumptions made for

tractability, and the behavior of actual targets and existing search

devices.

Subsection 4.1 details the straightforward generalization of the

scrh.fcrmulatlor. to, accoai ar. ar--'-'--- be f .t-&f AU&A

or moving searchers. Recognizing that search devices are often not

Markovian in the sense of Eq. (3.13), we present a good "equivalent"

Markovian search density in subsection 4.2 by invertirg the integral

equation for Koopman's lateral range curve. Subsection 4.3 extends the

search formulation to handle the simplest kind of non-Markovian target

motion for which the classical fleeing datum is a special case. Closed-

form solutions of the search equations are obtained tor a fleeing datum

search. Finally, to illustrate the generality of the search formulation,

subsection 4.4 presents a numerical exomp' in which the probability of

detection Is calculated as a function of time for two paths followed by

a moving searcher attempting to find a fleeing datum; this result is

compared to one obtained with a descendent of the path-invariant "random

search" model first proposed by Koopman.

Ah,:
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4.1 "fJLTIPLE SEARCHERS

Th.e search density y(x,t) defined by Eq. (3.10) for a stationary

target is actually the aggregate effect of the total search effort.

The precise manner in which y(x,t) depends on the activities of many

individual searchers does not affect the developments of Sec. 3.0, but

is central to the application of the continuous search formulation.

Thus, below we costiuct y(x,t) from the paths and laws of detection

for each of an arbitrary number of moving or stationary searchers.

Consider a search undertaken by n searchers such that the ith

searcher follows the known path z i(r)() for tI[Til,Ti 2 ), where

T il > 0 is the time at which the ith searcher comences his effort, and

1 1 .(ill is the time at which he abandons the search. Obviously,

for a stationary searcher, zi(t) z i E for tG[Til,T12 ). The law of

th
detection for the i searchor 4-s defined in the same manner as y(x,t);

i.e., the probability that the i searcher will detect in the staall

interval [t,t+At), given that the target is at xGX, is

Yi[X,Zi(t)]At + o(At)

The n searchers are assumed independent in the sense that, from Eq. (3.10),

n

Y(x,t)At + o(t) - 17 -Y [x,zi(t)]At +

n

= At 2:yi x,z 1 (0)] + o(At•)

1.-I
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The search density y(x,t) is thus expressed in terms of the in-

dividual laws of detection y[x,z i(t)], i -l,-',...n, by

y(xt) Y1xxjt)] • (4.1)
i-I

Clearly, in order that the search process continue to satisfy Eqs. (3.11)

through (3.15), the laws of detection for the individual searchers must

satisfy similar conditions.

Noting that, for all xEX, Yi[X,z i(t)J - 0 when t < Til or t > Ti 2 ,

we can define T2 - T1 as the search duratz.on where

""T il<i<n

and

T2 - max T 2
l<i<n

Obviously, T2 > T and y(xt) - 0 for t < TI or t > T2 .TT T is commonly

referred to as the "time late" in military applications.

4.2 NON-MARKOVIAN SEARCH: INVERSION OF A LATERAL RANGE CURVE

A sensor commonly used to search for submarines operates approxi-

motely as follows [41: A s:tgnal that may indicate the presence of a sub-

marine is integrated over a "sliding" time interval of fixed length.

If the value cf the integral ever exceeds a predetermined threshold,

then the sensor is activated. Such a sensor is not Harkovian in the

sense of subsection 3.2 because of the "memory" property of the integral

ii
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operator. The present subsection develops a useful approximation for

non-Narkovian search devices that allows us to apply the search formula-

tion to many situations where such devices are employed.

Whether or not a search device is Markovian, it can be chars terIzed

by the so-called lateral range mune, q(&). The function q(E) is defined

as the probability of detecting a stationary target when the searcher

follows a straight-line path of infinite length and closest approach

to the target [1]. The lateral range carve can be approximated by

empirical data or computed directly from physical arguments.

Consider a search employing a single Markovian sensor with law of

detection y I[xz 1 (t)), which is a function of only the target-to-

searcher Euclidean distance r - Ix--z(t)I. If the target is stationary

2 2
at the origin ot E2, and the searcher is stationary at zI (E,1 )EE

then denote the search density by y(r) - y [O,z,]. Now let the searcher

wove at speed w along the path from (•, -®) to , thus obtaining the

probability of detection q(&) from the well-known expression [I)

q(E) 1 - exp [-. '•)i , (4.2)

where

F(&) = f Y( +I2 di (4.3)

(Note that Eqs. (4.2) and (4.3) can also be obtained by use of Eqs.

(3.29) and (3.30) for p(x,t;y,T) = 6(x) and p(yo) - 6(y) .) Clearly,
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q(&) is zhe lateral range curve for a Markovian device with law of

detection y1 [X.Z 1 (t)]"

The following question is reasonable to ask at this point: If we

know the lateral range curve for a radially symmetric non-Markovian

device, can we calculrte the "equivalent" Harkovian law of detection by

inversion of Eq. (4.3)? As shown below, we can generally invert the

lateral ra ge curve and then use the resulting Markovian law of detection

as input to the search formulation.

In order tb Lnvert Eq. (4.3), write

S2f J (rdr
w (r2 _ 22) 1/2

where, an before, r U (C2 +1j2)1/2. Now let r- 1/s and Ii2 , /a, so

that

F(a- a1/2 a y(s- 1/2)ds
w s 3/2 (a3 ) 1/2

or

G(a) A s)ds (4.4)I(a-s)l/2

0

where

G(a) u, a1/2 F(a/ 2 )
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and

X(B; - a -3/2 (0-1/2)

Equation (4.4) is an Abel integral equation [51, the solution of

which, for continuously differentiable C(a), is

S

'I(S) _ - 0 + GI. (G(a) da (4.5)
1s1/2 J (s-.a)1/2

As an example of the use of Eq. (4.5), consider the lateral range

curve for the inverse cube law cf detection [1]

Ig- !r

where w is searcher speed and k is a constant dependent on scveral aspects

of the search that need not concern us now. Thus,

2k

F 2kG(a) -2ka 1/2

and, from Eq. (4.5),

s(s) da

if 1/2 1T
X~~s)~ - [ a (s-a)1/

1/2

2(k du710 (su 2)11/2
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-k

3
Therefore, as expected y(r) - k/r , the search density for the inverse

cube law of detection.

Although we have shown how to obtain the equivalent law of detection

for a non-Harkovian nearch device, we have not shown how good an approxima-

tion it is for calculating the probability of detection using the search

formulation cf Sec. 3.0. Obviously, it is an exact approximation for

infinitely long straight-line search paths, wherein lies the key to a

aeneral evaluation of the inversion technique. If the motion of the

searcher relative to the target is nearly linear at almost constant speed

over the detection range of the aevice, then the Inversion technique

represents a good approximation. Further analysis is necessary to estab-

lish the accuracy of the technique under more general search conditions.

4.3 CONDITIONALLY MARKOVIAN TARGETS: THE FLEEING DATUM

The search formulation is applied here to a member of the simFle

class of non-Markovian target motion described as follows: At t 0, s

realization of an n-dimensional random variable a is obtained from the

known density f(a). Target motion for t > 0 is Markovian with con-

ditional transition probability function * (x,t;y,T). Let the solution

of Eq. (3.30) for Sa (x,t;y,T) be denoted by p (xt). The joint density

is then given by the n-dimensional integral p(x,t) Jp (xt)f(a)da,

and the probability of detection remains P(t) - l-fp(xt)dx. This



clas.; of motion, which we shall call conditionally Markovian, is a

generalization of Stone's conditionally diterministic motion [21, where

knowledge of a at t - 0 implies deterministic motion for t > 0. The

fleeing datum, which we now treat in ditail, is an important exampl,, of

conditionally deterministic target motion.

The fleeing datum meves at a known constant speed u on a straight-

line path after chooding a heading 0 at t - 0 from a uniform distribu-

tion on 10,20). If 0 is measured counterclockwise with respect to the

x coordinate, then the conditional transition probability function for

the fleeing datum is given by the two-dimensional Dirac delta functinr.

lpIb th ' T A -- 0 ' t')

"0""'-"t " ".T',.. " , ,. -- F...

where v= u(cos 0, sin 0) is the random velocity vector with magnitude

u and direction 0. SubsLituting Eq. (4.b) into Eq. (3.30) results in

the following linear differential equation for the Joint density con-

ditioned on the bearing Oe[O,2n):

3p 0 (xt)
at v p P0 (x,t) - y(x,t) p 0 (x,t) (4.7)

The solution of Eq. (4.7) for initial condition p0 (x,O) - p 0 ( ) is

F t
PO(x,t) - (o(x - vat) xp Y[x- vo(t-s),sjd (4.8)

for xeE4 and te[O,'). I ius, the pribability of dk, t'Ltuing a fleeing

daZur bp, time te [0,-) for initial locatton dens- y p0W and search
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density y(x.t) is given by

P(t) -1 - 1 D(x- vt) exp y[x-vo (t-s),s]ds dedx (4-9)

where v. - u(cos 0, sin O) is the randomly oriented velocity vector with

knoun magnitude u. This expression is used extensively for the numerical

optimization procedure of Sec. 5.0.

4.4 CCOIPARISON WITH A RANDOM SEARCH MODEL

Prior to the work of Hellman [31 and the formulation presented

here, problems concerning the search for a moving target were often

treated by, ,-,2e cf Monte Car~c simulat-nIs -r the random search -- de-

of Koopman [i]. Simulations involve relatively high program develop-

ment and execution costs, whereas the random search model omits many

important features of the operational search problem, such as the

searcher's actual path and realizable target nrwton. After a brief dis-

cussion of the random search model, this subsection solves a simple

fleeing-datum search problem using that model and compares the result

to the solution obtained using Eq. (4.9).

The random search model is predicated on the following assumptious:

1. The target's position is uniformly distributed in a region

of area A and maintains that distribution for all teI[O, -).

2. The search path is random in A in the sense that disjoint

sect'ons of the path are distributed uniformly and in-

dependently in A.
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3. The searcher's law of detection is such that detection is

certain within range d of the target and cannot occur

outside d.

Assumptions 1 and 2 do not correspond well to physical imperativea but

it is assetted [1] that, in situations where target and searcher are

moving in complex paths at varying speeds, the assumptions are reasonable.

Assumption 3 is the well-known definite-range law of detection, which

is often used as an approximatiGn for a device with lateral range curve

q(•). In this case, d is taken to be q()dC.

Assuriptions 1 through 3 lead to the well-known random search formula

for the probability of detection

I --

P - - exp dL)

where L is the length of the searcher's path in A. If we now consider the

search area to be a circle with increasing radius R(T) - R1 + uT (i.e.,

the radius is increasing at the rate at which a fleeing datum is assumed

to be moving outward), then the pribability of detection may be approxi-

mated by the random search formula for an expanding area [6]

P(T) - I - exp RRT) (4.10)

where w is the searcher's speed and the search commences at t - 0. We

will use this expression as representative of the random search formula-

tion for a fleeing-datum searci. problem.
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In order to use Eq. (4.9), we must first understand the impli-ationn

of using the definite-range law of detection. Strictly speaking, it re-

sults In an unbounded and discontinuous search density Y(A,t), thereby

violating assumptions (3.11) and (3.12). Although a formal argument

employing the limit of a sequence of bounded and continuous functions

could be made, a more direct way to Justify the use of the definite-

range concept comes from a physical interpretation of Eq. (4.8).
For fixed x~E2 , :.[0,2w), and tE[O,-), Eq. (4.8) weighs

exp[-f'y[x-v0(t-s),slds] by the value of the initial density at x-v 6 t.

2For search path z,(s)GE2, sCI0,0). y(y,s) - yi[y,zi(s)) is infinite

when ly-z 1 (s)j < d, and zero otherwise. The motion of the target im-

pIt..... ......... in th . a [- - l']ds is a straighE-line path

from y t x -V 0t at s -0, to y.2 x at a - t. Therefore, if the target

moving on this path ever comes within range d of the searcher at z (s),

then ItYIx- v((t'), zI(s)Jds - -, and p0(x,t) - 0; otherwise,

tYI[x - vo(t-s). z, (s)Jds - 0, and p 6(x,t) - Po(x- vt). These observa-

tions lead to a remarkably simple numerical procedure for evaluating

Eq. (4.9) whetn a definite-range law of detection is assumed.

Consider che following inputs to a hypothetical submarine search

problem:

1. The initial target density is given by

p.x) 2 2 2 ] _x (. 2)

P (x) _:Lexp [-(x 1 + X2)/2022wo 2 1o22

where o - 10 nmi.
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2, The submarine moves as a fleeiag datum with speeC u t 3 kr

3. The search is under taken at T. = 3 hr by a Eingle searcher

using a definite-range law sensor with d - 2 nmi.

4. The searcher flies at constant speed w - 200 kt along the

path z Cl) z H z2(r)jZ-2 ( 2, t Fz - where

Z (T) - r(T) 'Cos [D--r(T)j

IF Sa 

= 12w
r ii ,/

and D - 32 nmi. Tae search terminates at T = 7 hr.

The search path define3 in item 4 is an inward spiral starting at

D = 32 nmi from. the origin when t = T1 = 3 hr7 and ending ac approxi-

mately 2 nmi from the origin when C T2 = 7 hr.

The probability of detection for this problem was calculated with I
the help of Eq. '4.9) and plotted in Fig. 4.1 under the heading "inwardI ..spiral search path." The cclculation wis repeated for a _Jeco(l( search

patb z (I) z](T 2 - r), T6Z [O.T 2. T1), whJ.ch is simply an iiofolding of

the first path. Fig.re 4.] plots the result )" the second caIcL-ation

utnder the-, headieng "outward spiral search path." The -esults of the-e

two ca:culattons are tntu. Eive: The outwa:-j spiral oath quir. kiy restcs:
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in a relatively high probability of detection, since the searcher is in

a relatIvely "dense" target area fcr about the first two hours of search;

the inward spiral path takes about two hours before rapidly increasing

the protabili'y of d'tecticin, sincre, after that time, the searcher

finally begins to move through a relatively dense target area.

Figure 4.1 also graphs the probability of detection calculated

using Eq. (4.10) for random search of an expandiag area. The input

values for this calculation are taken from the first two calculations

as applicable, i.e., u - 3 kt, d - 2 nmi, and w 230 kt. Since the

search commences at t = T, f 3 hr, we chose RI 1.50 + uT 1 = 24 nmi.

This choice is arbitrary, but the main conclusion to be drawn from

Fig. 4.1 does not depend on it: the path-invariai t random search formula-

t)Jon is not a good estimate of search system performance for known search

tactics3.
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5.0 NUMERICAL OPTIMIZATION

The theory of optimal search for a stationary target has received

considerable attention; the recent book by Stone [21 presents a unified

treatment for much of that work. Saretsalo [7], working with Hellman's

quation for detecting a Markovian target, has presented a necessary

condition for the optimality of the search density y(x,t) in the sense

of maximizing the probability of detection P(T) for fixed T1[0,a,).

Saretsalo's result is directly applicable to the search formulation of

Sec. 3.0, but the question of sufficiency limits its utility.

The computatloral simplicity of Eq. (4.9) suggests the use of

numerical techniques to optimize the search for a fleeitt udaLum. iictl-

fore, this section considers the numerical optimization of a stationary

search (i.e., a search with density y(xt) - y(.) for all xeX and

tE [T,T 2)) for a fleeing datum with a c~rcular normal initial density.

We constrain the search density y(x) to be the result of using n - 4,

8, or 12 definite-range-law sensors equally spaced on the circumference

of a circle with radius R centered at the origin of E2 . R is then chosen

to maximize P(T 2 ), the probability of detection over the search interval

[TI,T 2 ). The performance of the be.t circular pattern using eight sen-

sors is compared to thal of an optimal square nattern with nine sensors

and shown to be superior. Finally, we determ ke the effect of using a

fleeing datum circular pattern to find a target that in fact randomly

chooses a new course every AT time unite. The ;ectior. concludes with

suggestions for broadeninL o r computational experience and extending

the analytical development of the search formulation.
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5.1 STATIONARY SEARCH FOR A FLEEING DATUM

This subsection performs a numerical optimization of a constrained

stationary search for a fleeing datum. Initially,. the target is assumed

to be located according to the circular normal density

P0 (x) 1 exp2 , x_ (x2,X 2 )3E .2

Target motion for t > 0 is given by the fleeing-datum transition prob-

ability function of Eq. (4.6). We restrict our attention to the class

of search densities defined by

0 tV [0,TI)

).x,t) - y(x) tC- 1.[,T 2 ) (5.2)

0o tF_ [T 2,.)

A search using a member of this class of densities is referred to as a

atationary seac~h with time late T and duration T2- T1 . The following

numerical optimization seeks to maximize P(T 2 ), the probability of

detection during the interval [TITT2 ), over a specific family of sensor

configurations that satisfy Eq. (5.2).

The solution of Eq. (4.7), the fleeing-datum linear search equation

conditioned on target heading 0 [0,2w), when y(x,t) is given by Eq.

(5.2), is

p 0 (x- v0t) tE [O,TI

P()(X, P 0(x -v ,t) exp[ f Y[X-v 0(t-s)Jds t.e [TIP T2)
T I

maim
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where v6 - u(cos 6, sin 6) is the target velocity vector with known

speed u. The probability of detection in [T1 ,T 2 ) is thus given by

2w T=

P(T2 *. po(x- vOT)ep_1 E
2O-O2' Y(X 86 (T 2ljdd

X1

(5.3)

where, for the numerical work below, we assume that p0(x) is circular

normal.

The search is assumed *o involve the use of n defititt-range-law

sensors with detection range d. The sensors are assumed to be inde-

pendent In the sense of Eq. (4.1). (Subsection 4.4 discusses the compu-

tational implications of assuming definite-range-law sensors.) We seek

the optimum placement of the n sensors such that the probability of

detection calculated from Eq. (5.3) is maximized. However, we do not

attempt a global optimization, but instead constrain ?he sensors to lie

equally spaced on the circumference of a circle centered about x - 0,

the mean of p (x)--see Fig. 5.1 for n - 8 sensors--and then calculate

the radius R of the circle that maxiimizes P(T 2) As long as the cir-

cular detection areas of the individual sensors do not overlap (as wilt

be the case for our analysis), the circular pattern is reasonable in view

of the radial symmetry of both the initial density and the fleeing datum

motion.

Placing the optimizatien in the context of a search for a fleeing

submarine by use of moored acoustic sensors (i.e., sonobuoys), the

following values were chosen for the input paramcters: n 4, 3, or

12 sonobuoys; u = 6 or 12 kt; o = 20 or 40 nm.;; and d = 4 or 10 nmi.\I

aia
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X2

Notes: (1) Sensor i is located at zt
(2) Each sensor detects w.p. 1

out to range d

z 3

Z4//

U 0 45* - -45"

Fig. 5.1--Circular pa.ttern of n .=8 definite-range--biw sensor•i
used to detect a fleeing datum

z z

6\
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The time late T and search duration T2 T were fiked at 4 and 6 hr,

respectively. The table below lists the radius of the optimum circular

sonobuoy pattern, and resulting probability of detection, for each com-

bination of the parameters n, u, 0. and d. Figure 5.2 plots r(x,t),

t - 7 hr, the conditional density midway into the search for case 14 in

the table. The darker an area, the more likely the target is within

that area, assuming an unsuccessful search. To show the sensitivity of

P(T2), the detection probability, to changes in R, the radius of circular

sonobuoy pattern, Fig. 5.3 plots P(T 2 ) against R for cases 10, 12, 14,

and I1.

Figure 5.4 plots P (T 2 ), the probability of detection for the

optimum circular sonobuoy pattern, against n, the number of sonobuoys

deployed. Each of the eight -urves corresponds to a unique combination

of a, a, and d. The plot could be used, say, to conclude that a search

for a fleeing submarine using only four sonobuoys, each with a 10 nmi

detection range, is about as effective as a search using 12 sonobuoys,

e, ch having a 4 nimi detection range.

To demonstrate the effectiveness of the circular sonobuny pattern,

we calculated the probability of detection for a square pattern, using

nine sonobuoys as shown in Fig. Ž.5. We chose the distance between

sonobuoys L to maximize P(T 2 ) for speed u - 12 kt, detection range

d - 10 nmi, and initial standard deviation a - 20 nmi--as in all cases

using the circular patterns TI 4 hr and T2 1 10 hr. The maximum

P (T,) - 0.35 was achieved for 1. 53 nml; Fig. 5.6 plots p(xt),

t - 7 hr for L - L . Thus, the optimal. squJare pattern with nine sono--

bioys was slightly less effective than the optimal circular vattern

using eight sonnbuoys (case 8).
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OPTIMUM CIRCULAR SONOBUOY PATTERNS

Initial Optiwtm maximum
Number of Ta- -et StanuoLd Detection Patterv Probability
Sonobuoys Spe:ed Deviatiou Range Radius of Detection

(n) (u kt) (a nmi) (d nmi) (R nmi) (P (T2))

1 4 6 20 4 26 0.11

2 20 10 26 0.32

3 40 4 24 3.07

4 1 40 10 29 0.21

5 12 20 4 68 0.07
SIn 20 I 3 62 0.18

7 4-40 4 59 0,05

8 40 10 58 0.14

9 8 6 20 4 30 0.21

10 20 10 32 0.58

11 40 4 28 0.13

12 40 10 35 0.35

13 12 20 4 67 0.13

14 20 10 62 0.36

15 40 4 63 0.10

16 40 10 58 0.28

17 12 6 20 4 32 0.31

18 I 20 10 40 0.75

19 40 4 29 0.19

20 40 10 44 0.44

21 12 20 4 67 0.20

22 120 10 62 0.5L

23 40 4 65 0.15

24 40 10 65 0.40
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,nz

Notes: Target speed: u =12 kt

Initial standard deviation: o 20 nrni

Sonobucy detection range: d =10 niniI
Pattern radius: R = 32 nmi

Timie late: T I = 4 hr

Density plot: p(x,t). t =7 fir

Fig. 5.2--Target density p(x, t) for all unsuccessful search using a
ci~rcular pattern with ti - 8 sonobuoys
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1.0
Iase n -P 0J Notes:

0.9 10 8 6 101 10 (1) At t .0, target has circular
1 40 11 1o:i nonral distribution

0.8 _14 5 12 204 10 (2) Search is s-om T 4 hr0.8- - 146 1 1 1o •o ° z ' '

16 8,12 140110.
I-/
Zr 0.7

0.5

S0.4

" 0.3

0.2

0.1

O06 1- 0 20 30 40 30 60 70 80 90 100

Radius of sonobuoy p sttern, R (rnmi)

Fig. 5.3--Probabillty of detection versun radius for representative circular
sonobuoy patterns
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0.4

- - -

o 4I'
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U a Notes: (1) At t *0. target hias circular

6 20 no~inal distribution

6 0TO (2) Search is from T 4 hr

12 44

0.8

0.7 ,

0." sonobuoy detection
0.6 -nge: d = 10 nml

0.5

0.4

L0.3 Il ,/sonobuoy detection

'"range: d 4 rnmi

0.*2

00 z 4 6 8 10 12 14

Number of sonobuoys, n

Fig. 5.4--Probability of detection for optimm circular sonobuoy
patterns used to detect a fleetng submarine
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xq Notes: (1) Sensor i is located A zi
(2) Each sensor detects w.p. 1

out to range d

xl

0 L@C D

Fig. 5.5--Square pattern -if n 9 definite-range-law sonobuoys
used to detect a fle•eing submarine
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clotTagtspe: u 2k

--- arm

Sonuuoy etecion ange d 1 nan

IOU

DensTrgty speet: pux1t) t 7h

Fig. 5. 6--Target density f Cx, 0) tor mr miisucces.;s'fii :iearch using a
Square pattern wit'! n -- 9 sonobuoys;
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5.2 EFFECT OF TARGET COURSE CHANGES ON OPTIMIZATION

We now consider the effect of deploying an optimal circular sono-

buoy pattern to detect a target that is assumed to move as a fleeing

datum when in fact it randomly chooses a new course every AT time units.

Recall that a fteeing datum moves on a straight-line path after a single

random heading ;election at t = 0. As in subsection 5.1, we assume that

the target distribution at t = 0 is circular normal, and that the search

cormences at tiae late T1 > 0. The target is assumed to move as a

fleeing datum until t = TI; however, at t = Ti, the target selects a

new course from a uniform distribution on (0,2r). Furthermore, the

target continues to select a new course every AT time units cGrresponding

-~ ~ GI "C~n u Senstt. o rna Uep' i.trPU--VtIL ca. -L -- TI,

and subsequently a'tempts to avoid detection.

At t = T, the target location density is the solution of the

search-free equation (3.32) for a fleeing datum. Specifically, for

x = (Xx,2) )E,

(X T 1 exp 2 -,+ u2 T 2)#/2a 2 11(rUTl/0 2

1 2 2
where r = 4- x , and I denotes the otdinary Besoel function of order

zero with an imaginary krgument. SInce the search cýmmences at the tilne

of the first new course selection, Eq. (5.4) can be interpreted as the

initial density i.f a flee.tng-da-tum search problem wIth time late zero

and search duuarlo AT. The Joint density at t = 1 + AT can then be

computed using %. (4. 8)
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AT(T T1  4-ATp ,T+ AT) AT, T) ext[,/ tXv(T 1  Ts'd d8

(xA T P(x- v8 d YX - 1+ATs dU

p(x,T 1 +AT) - •~Jp(x,T 1 +AT)

Now using p(x,T1 +AT) as the initial density for a fleeing datum search Z

K o•, uI LII• .ui~terval I[i. + &U.. L + ATI. ... ....e can. coIpu-tc n.AT•'-2 ' , L~•

probability of no detection in that interval, and so on. Thts procedure

nbtains the probability of detection in the interval [TT ) given by

msim-l
Pm(T 2 ) 1 -1H O1 T(k) (+.5)AT

k=l

I AT

where AT Is conveniently chosen such thnt m fT = T2 - Ti. d

1|
For case la tae 1i ter tal t he radius of the opCiaum circular pattern

of eight sonobuoys is R =32 nmi. Holding all other inputs the same

as in case 10 (i.e., submarine speed u =f 6 kt, initial standard devia-
tpon a i 20 nmi, and sonobuoy detection range d o on.mi), we use this

cir'-uiar pattern to compute Pm(T2 )• from Eq. (5.5) an a function of m, the

number of codrse changes in the 6 hr interval 0T,,T2 ). The results are

graphed in Fig. 5.7c The value of Ps (2 ) at mT 0 is, of coTrs, theT

2ml

For ase 0 I thetabe, te raiusof te oriyom ciculr paterof eih___uy i 2ni oligalohr nustesm
asi ae1 iesbaiesed. t nta tnaddva

t lion a - 20 nui an so o deeto rag d - 10 n ) we us thi
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probability of detection for the optimum circular sonobuoy pattern when

the submarine moves as a siml le fleeing datum. It is of some interest

to note that Pr(T2 ) >P 0 (T2 ) - 0.58 for m=1,2,...,7. A submarine

attempting to avoid detection by a circalar sonobuoy pattern optimized

for a fleeing datum would thus actually deoreaae its probability of

escape by making a few additional course selections. Furt.iermore, Fig.

5.7 suggests that an optimum fleeing-datum search pattern is not signi-

"icantly compromised by any number of course changes in the inter-

val [T 1 ,T 2 ) (i.e., 1Pm(T 2 ) - P0 ('r 2 )I < 0.03 for all m >7). Although our

example is somewhat idealized, these results may warrant further in-

vestigation with more realistic input6.,

As a final caicuiarlnn for the inputs of case 10 and m - 6 course

changes, Fig. 5.8 plots Pm(T 2 ) from Eq. (5.5) against R, the radius of

a circelar sonobucy pattern. The optinum circular pattern of eight

sonobuoys is shown to have a radius of 28 nmi wh:'n the submarine is

assumed t-, select a new bearing every hour. This compares %Lth an

optimum radiu. ',f 32 nmi for the simple fleeing datum motion.

5., EXTENSIONS

The purpose of this report is to 1) render tne search formulation

accessible to operations analysts without sacrificing mathematical

r ger; 2) narrow the gap between certain analytical assumptions and the

behavior of actual targets and existing search devices; and 3) illustrate

the utility of the formul-tion with simpli, numerical ol.-rlization pro-

,edures. The developments h.,rein i;hould be regarded as an intro-i.'ictiot, to

Sthis work. Son--- suggesrions fcr further research ?re given below.
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Notes: (1) Search inputs:
-Number of sorobuoys: n 8

*Sonobuoy detection range: d 10 nmi

-Time late: T I 4 hr

*Search duration: r2 - T1 '6 hr

1.0 (2) Submarine inputs:

-Standard deviation at t - 0: a * 20 nil

-Speed: u = 6 kt
*First course change at T 4 h~r

-Later course changes every hour

0.8

Nt

0.70.7

t•, 0.6-

0.5 --

0 0.4

0.3

0.2

0.2

01 I I I 1 I _ 1 3 5..41 0_1.1 1 5 0 i

Radius of sonobuoy pdttern, R (nmi)

Fig. 5.8--Effect of sonobuoy pattern radius on probability of detection
for a submarine that changes course every hour
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The numerical analysis of this section would be more relevant to an

actual search if a modest effort were made to improve the characterization

of target and seprcher behavior. For example, by obtaii.ng analyticel

solutions of Eq. (3.30) for 1) the class of conditionally deterministic

tar ;et motion or 2) more general diffusion motions, we could petform the

nneerical work of this section for a much broader and realistic set of

targets.

With regard to the sear.;h process, it would be desirable to solve

numerical problems fot search devices with more sophisticated laws if

detection than the definite-range concept. Perhaps an integration-type

sensor (see subsection 4.2) subject to "convergence zone" phenomena

18J would be a core± realistic device to study. More generally, future

numerical work should include the constrained optimization of a moving

searcher problem--i.e., from a given family of paths that : moving

searcher rigiht follow, find the path that results in the highnst prob-

ability of detection in a given search problem.

On a more fundamental level, work should be done on the problems

of evasive targect, false targets and false contacts, multiple targets,

and search devices chat detect as a function of the relative orientation

of target and searcher. Finally, for a general Markovian search, we

have yet to solve the problems of obtaining sufficient conditions for

an optimal search density and how to obtain such a density having found

those conditions.
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